Total Synthesis of (+)-Porothramycin B

Tohru Fukuyama,* Gang Liu, Steven D. Linton Shao-Cheng Lin, and Hiroshi Nishino
Department of Chemistry, Rice University
P.O. Box 1892, Houston, Texas 77251

Abstract

Abstruct: The first total synthesis of (+)-porothramycin B (1b) is described. Our synthetic pathway can be readily applied to the synthesis of other members of the pyrrolo[1,4]benzodiazepine antibiotics.

Porothramycin (1) has been recently isolated from a culture broth of Streptomyces albus by Tsunakawa and co-workers and has been shown to exhibit potent antitumor activities. ${ }^{1}$ Natural porothramycin A (1a) could be readily converted to crystalline porothramycin B (1b) by treatment with methanol. Porothramycin B (1b), whose structure was determined by extensive spectroscopic studies, bears a striking resemblance to anthramycin (2), a well-known member of pyrrolo[1,4]benzodiazepine antibiotics. ${ }^{2.3}$ In this communication we report the first total synthesis of porothramycin B in an optically pure form. Our synthetic pathway is amenable to a largescale operation and generally applicable to the synthesis of the anthramycin family antibiotics and their analogs.

1a: $R=H$
1b: $R=M e$

2

L-Glutamic acid (3) was transformed to the known oxazolidinone 44 in a two-step sequence in 88% yield ((1) $\mathrm{BnOCOCl}, \mathrm{NaOH}, 0-2{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$. (2) $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}$, p-TsOH, PhH, reflux (Dean-Stark trap), 30 min). The free carboxylic acid 4 was converted to ethyl thiolester 5 in 87% yield according to the Steglich's procedure ${ }^{5}$ (EtSH, DCC, DMAP, $\mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min}$). Upon treatment with triethylsilane, thiolester 5 underwent smooth reduction to give the desired aldehyde without appreciable hydrogenolysis of the Cbz group ($\mathrm{Et}_{3} \mathrm{SiH}, 10 \% \mathrm{Pd} / \mathrm{C}$, acetone, $23^{\circ} \mathrm{C}, 40 \mathrm{~min}$). ${ }^{6}$ The crude aldehyde was immediately protected as the dimethyl acetal 6 , which was subsequently treated with sodium methoxide to give N -Cbz-amino ester 7 in 70% yield from 5 ((1) $\mathrm{CSA}, \mathrm{CH}(\mathrm{OMe})_{3}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}, 40 \mathrm{~min}$. (2) $\mathrm{NaOMe}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}, 70 \mathrm{~min}$). Hydrogenolysis
of the Cbz group of 7 provided the highly versatile amino ester 8 in a quantitative yield ($\mathrm{H}_{2}(1 \mathrm{~atm}), 10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{EtOH}, 23^{\circ} \mathrm{C}, 3 \mathrm{~h}$). Acylation of the amine 8 with 3 -methoxy-2-nitrobenzoyl chloride was performed by a twophase reaction to give the amide 9 in 95% yield (satd. $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}$). Selective reduction of the methyl ester 9 with lithium borohydride in the presence of a trace of $\mathrm{LiBEt}_{3}{ }^{7}$ furnished a primary alcohol, which was isolated as the corresponding acetate 10 ((1) LiBH_{4}, cat. $\mathrm{LiBE}_{3} \mathrm{H}, \mathrm{THF}, 23^{\circ} \mathrm{C}, 80 \mathrm{~min}$. (2) $\mathrm{Ac}_{2} \mathrm{O}$, $\mathrm{Py}, 23^{\circ} \mathrm{C}, 15 \mathrm{~min}$). The amidoacetal 10 was subjected to a facile cyclization-elimination reaction by treatment with quinolinium camphorsulfonate (QCS). ${ }^{8}$ giving the enamide 11 in 79% yield from 9 (CSA, quinoline, PhH , reflux through an alumina column, 1.5 h). Conversion of the electron-rich enamide 11 to the aldehyde 12 was effected by the conventional Vilsmeier reaction (POCl_{3} (10 equiv), DMF (20 equiv), $100^{\circ} \mathrm{C}, 45 \mathrm{~min}$; then NaOAc (45 equiv), $\mathrm{H}_{2} \mathrm{O}, 100^{\circ} \mathrm{C}, 15 \mathrm{~min}$). 9.10 After acetylation of the minor, partially deacetylated alcohol, the aldehyde 12 was converted to the conjugated amide 13 by treatment with the stabilized ylide, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCONMe},{ }^{11}$ in 74% yield from 11 (PhH , reflux, 2.5 h). Reduction of the nitro group with zinc, hydrolysis of the acetate, and subsequent acylation with allyl chloroformate provided the allyl urethane 14 in 64% yield in a three-step sequence ($(1) \mathrm{Zn}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$. (2) satd. $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 23^{\circ} \mathrm{C}$, 40 min . (3) $\mathrm{ClCO}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min}$). Swern oxidation of 14 caused the spontaneous cyclization to give a single stereoisomer of the protected porothramycin A 15 in 72% yield. ${ }^{12}$ Deprotection of the allyl urethane 15 was best achieved according to the Deziel's procedure ${ }^{13}$ to give unstable, non-crystalline porothramycin A (1a) in 67\% yield after quick purification by flash chromatography ($\mathrm{Pd}(\mathrm{PPh} 3) 4$, Pyrrolidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$). Crystallization from MeOH-EtOAc (1:20) provided pure porothramycin B (1b), which was identical in all respects to the natural porothramycin B by comparison of the spectroscopic data (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, and $\left.[\alpha]_{\mathrm{D}}\right) \cdot{ }^{14,15}$

6
7

Acknowledgment: Financial support from the National Institutes of Health (Grant CA28119) and the Robert A. Welch Foundation (Grant C-0722) is gratefully acknowledged.

References and Notes

1. Tsunakawa, M.; Kamei, H.; Konishi, M.; Miyaki, T.; Oki, T.; Kawaguchi, H. J. Antibiotics 1988, 41, 1366.
2. For reviews of the pyrrolo[1,4]beazodiazepine class antibiotics, see: (a) Horwitz, S. B. In Antineoplastic and Immiunosuppressive Agents; Sartorelli, A. C.; Johns, D. G., Ed., Springer-Verlag: New York, 1975; Part II, p 642. (b) Remers, W. A. The Chemistry of Antitumor Antibiotics; John Wiley \& Sons: New York, 1988; Vol. 2, Chapter 2.
3. For recent total syntheses of anthramycin class antibiotics, see: (a) Peña, M. R.; Stille, J. K. J. Am. Chem. Soc. 1989, 111, 5417. (b) Fukuyama, T.; Lin, S.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050.
4. Itoh, M. Chem. Pharm. Bull. 1969, 17, 1679.
5. Neises, B.; Steglich, W. Angew. Chem. Int. Ed. Engl. 1978, 7, 17.
6. Fukuyama, T.; Lin, S.; Li, L. J. Am. Chem. Soc. 1990, I12, 7050.
7. Brown, H. C.; Narasimhan, S. J. Org. Chem. 1982, 47, 1606.
8. Fukuyama, T.; Frank, R. K.; Jewell, C. F., Jr. J. Am. Chem. Soc. 1980, 102, 2122.
9. Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
10. An independent, similar approach to the anthramycin class antibiotics has been recently reported: Langlois, N.; Favre, F. Tetrahedron Lett. 1991, 32, 2233.
11. Croce, P. D. Annali di Chimica 1973, 63, 867.
12. Swern, D.; Mancuso, A. J.; Huang, S.-L. J. Org. Chem. 1978, 43, 2480.
13. Deziel, R. Tetrahedron Lett. 1987, 28, 4371.
14. We were unable to perform a direct comparison because an authentic sample of porothramycin B, kindly provided by Bristol-Myers Squibb Research Institute, Tokyo, had completely decomposed when we received it by mail.
15. Satisfactory spectroscopic data were obtained for all new compounds. ${ }^{1} \mathrm{H}$ NMR spectra ($\mathbf{2 5 0} \mathbf{~ M H z}$, CDCl_{3}) and $[\alpha]_{D}$ of the key intermediates are as follows:

8: $[\alpha]^{25_{\mathrm{D}}}=+9.6^{\circ}\left(\mathrm{c} 0.48, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.38(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 6 \mathrm{H}), 1.83-1.59(\mathrm{~m}, 6 \mathrm{H})$.
11: $[\alpha]^{25_{\mathrm{D}}}=-211^{\circ}\left(\mathrm{c} \mathrm{0.56}, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.52(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{dd}, \mathrm{J}=11,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=11,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{ddt}, \mathrm{J}=14.5,10.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50$ $(\mathrm{dt}, \mathrm{J}=14.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.

13: $[\alpha]^{2 s_{\mathrm{D}}}=-182.8^{\circ}\left(\mathrm{c} 0.61, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.56(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~m}$, $1 \mathrm{H}), 4.52\left(\mathrm{dd}, \mathrm{J}=11.4,4.8^{\circ} \mathrm{Hz}, 1 \mathrm{H}\right), 4.26(\mathrm{dd}, \mathrm{J}=11,4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H})$, 3.02(s, 3H), 3.1-3.0 (1H), 2.62 (dd, $J=15.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.

15: $[\alpha]^{25}{ }_{\mathrm{D}}=+280^{\circ}$ (c $0.50, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.52(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, \mathrm{J}=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.9-$ $5.7(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{dd}, \mathrm{J}=13.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ $(\mathrm{dd}, \mathrm{J}=13.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.0-3.9(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{J}=16,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}$, 3 H), $3.04(\mathrm{~s}, 3 \mathrm{H}), 2.87$ (dd, J $=16,3.0 \mathrm{~Hz}, 1 \mathrm{H}$).
Synthetic 1b: mp $162-7^{\circ} \mathrm{C}$ (dec); $[\alpha]^{25} \mathrm{D}_{\mathrm{D}}=+670^{\circ}\left(\mathrm{c} 0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.64$ (dd, $\mathrm{J}=8.1,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, \mathrm{J}=$ $11.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, \mathrm{J}=15.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}$, 3H), 2.86 (dd, $15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}$).

